Biogas from Animal Waste and Organic Industrial Waste

Kurt Hjort-Gregersen, M.sc.

Institute of Food and Ressource Economics University of Copenhagen

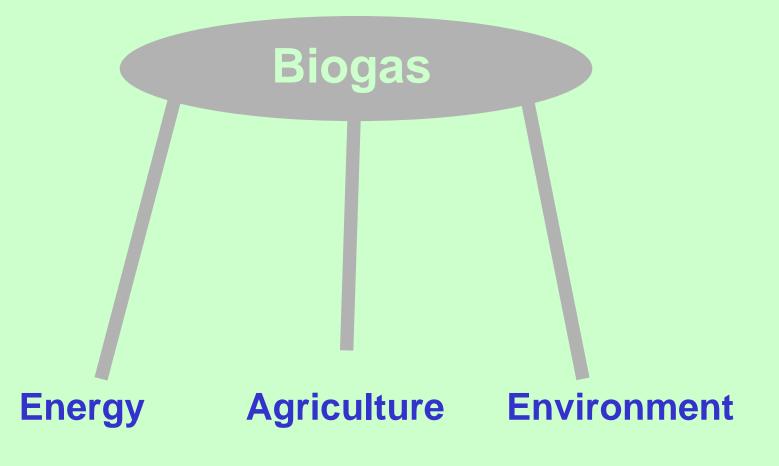
Denmark

Biogas Plants in Denmark 1973 – 2008

Under changing motivations

1973-1985

Oil crisis - domestic energy supply Less dependency on imported fuels – especially oil


1985-1995

Reduce nutrient losses from agriculture Renewable energy

1995-2008

Tool for green house gas reduction Sustainability in livestock production

Biogas rests on three legs

Development of plants

1973-1985

Pilot and farm scale plants – not successful

From 1984 -

Centralised co digestion plants, increasingly successful

2000-2001

Many, now relatively successful, farm scale plants

Future

Centralised Co digestion plants – separation, removal or distribution of surplus manure.

Structure and Activities of the Biogas Demonstration and Development Programmes

P R O	Investment grants	New plants received up to 40 % of investment costs as a government investment grant
G R A M	Monitoring Program	Production data and results were registered collected and analysed. Economic results were collected and analysed
A C T I V	Exchange of experience	Results were communicated to plant operators in working papers, reports and in seminars
T I E S	RD&D	General problem fields and specieal development tasks were pointed out for closer investigation

Actual situation i Denmark

20 centralised plants in operation

60 farm scale plants in operation

Technically well operating

Economically viable

-but co-digestion so far very important.

Production data from centralised co-digestion plants

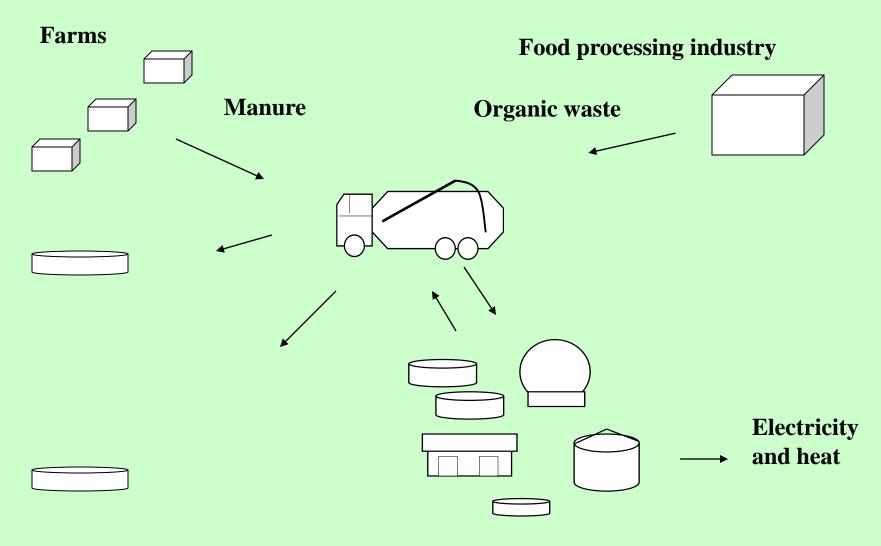
Animal waste treatment

Organic industrial waste

1.3 mil tonnes per year

0.3 mil tonnes per year

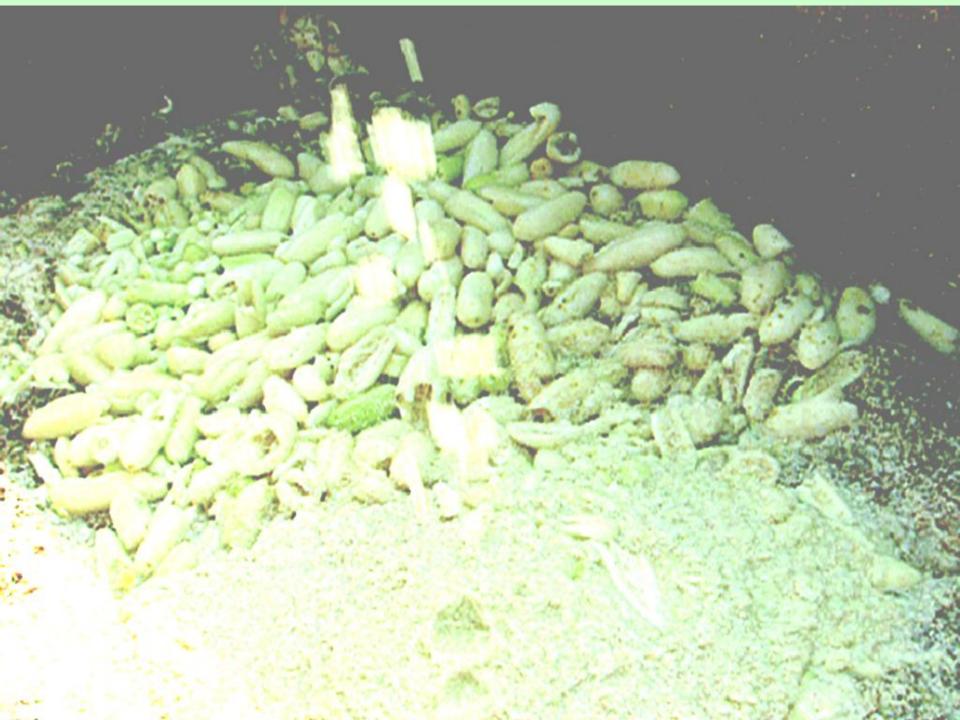
Energy production (2007)


Potential based on manure

1.7 PJ

20-30 PJ

Centralised Co-digestion Plant Concept



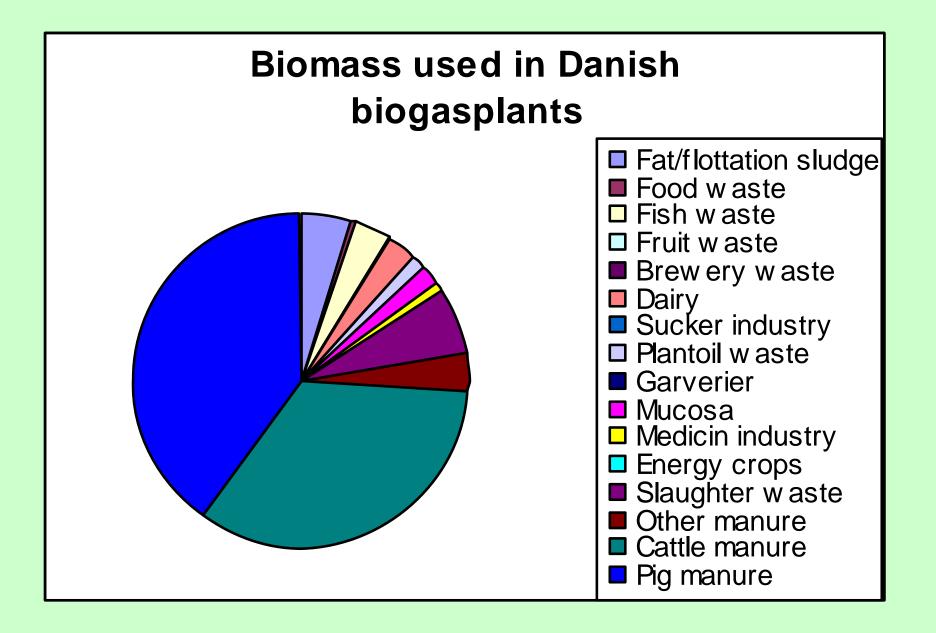
Energy application – Danish plants

Electricity – sold to the public power grid

Heat sold to district heating systems

Biomass resources

Liquid manure – could be different


Organic waste -0-20 %, depending on the quality

-From food processing industries.

Why is waste important?

1 tonne liquid manure 5% DM =20 m3 biogas1 tonne organic waste= 0 - 1000 m3 biogas

And treatment fees

Manure application

(In Denmark)

Spread in the fields and used as a fertiliser

nowadays, nomally by using trailing hoses.

What's in it for the farmers ?

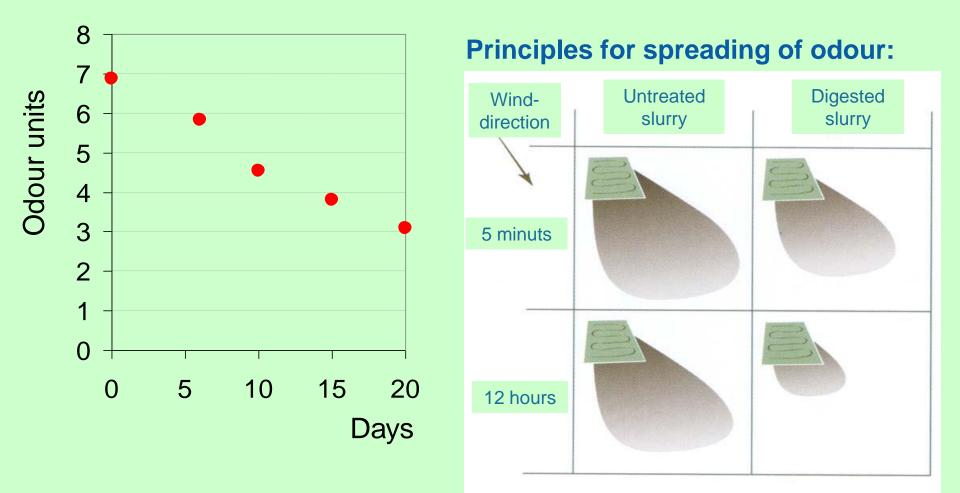
In general, it makes it easier to comply with environmental restrictions

-9 months storage capacity

-Maximum amounts of manure to be spread per hectare

The AD plant company provides

-The needed storage capacity -Redistribution or disposal of surplus manure


Farmers gain cost savings in

- -Manure storage
- -Manure transport
- -Manure spreading
- -Fertiliser purchase
- -In Denmark, $0,7 \in \text{per tonne manure treated}$

Fertilizer plan for nitrogen for 1 ha grass

	Case 1:	Case 2:
Per hectare	Cattle slurry	Digested slurry
N-requirement, kg	250	250
N in slurry, kg total	170	170
N-utilization, %	40	60
N in slurry, utilized,kg	68	102
Mineral fertilizer	182	148
Saved, kg	-	34
Saved, €	-	20

Digestion reduces odour

What's in it for food processing industries

- -Easy compliance with requirements on waste recycling
- Cheap and easy way to dispose waste
- -Improved image
- -Environmental friendliness can be used as argument for marketing purposes
- -In Denmark, approx. 17 \in per tonne waste

What's in it for energy consumers

-Energy from renewable source at competitive prices

-The satisfaction of environmental energy consupmption

What's in it for the businessman

- -Market options for green electricity trade
- -Market options for heat from renewable sources
- -Construction and operation of extensive technical facilities
- -Market for financing and insurance of extensive technical facilities.

What's in it for local society

- -New business, new local activity
- -New jobs, 1-10 directly associated to the plant
- -Related business who knows ???
- -Environmental improvements
 - -Fresh water systems
 - -Improved hygienic standards due to sanitation of manure
 - -Less odour nuisances.

What's in it for society in general

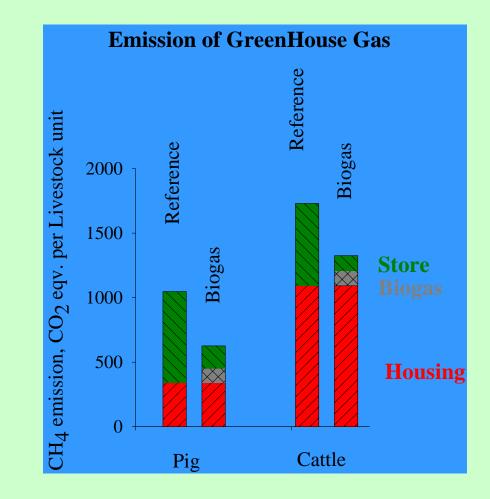
-Contribution to meet national environmental targets

-Implementation of green heat and electricity

-Green House Gas reduction

-CO2 -CH4 -N2O

-Increased waste recycling


-Improved standards in fresh water systems

-Improved hygienic standards

-Rural development

-New business, new activity in rural areas -New jobs

Green House Gas emission, with and without biogas production

Economic situation in Danish centralised biogas plants end 2001

	Year of construction	Acceptable	Balance	Under pressure	Unacceptable
V. Hjermitslev	1984		Χ		
Vegger	1985	X			
Revninge	1989		Х		
Ribe	1990	X			
Lintrup	1990	X			
Lemvig	1992	X			
Hashøj	1994	X			
Thorsø	1994	X			
Århus Nord	1995				X
Filskov	1995		Х		
Energigr. Jylland	1988/93/96			X	
Blåbjerg	1996	X			
Snertinge	1996				X
Blåhøj	1997		Х		
Vaarst-Fjellerad	1997			Χ	
Nysted	1998				X

Investment and treatment costs, 2000 prices.

	Per day treatment capacity		
Investment costs:	300 m ³	550 m ³	800 m ³
-Biogas Plant	5,5 mil €	7,9 mil €	9,6 mil €
-Vehichles	0,4 mil €	0,6 mil €	1 mil€
Inv. Costs per m ³ biomass			
treated per year	55 €/m³	44 €/m³	37 €/m³
Treatment costs per m ³			
biomass treated per year			
-Transport	2,2 €/m ³	2,2 €/m ³	2,4 €/m³
-Biogas Plant	7,1 €/m³	5,5 €/m³	4,7 €/m³

Break even levels of waste admixture and biogas yields

	Per day treatment capacity, m ³ biomass/day				
	300 m³/day	550 m ³ /day	800 m ³ /day		
Break even level of waste admixture	21 %	13 %	10 %		
	m ³ biogas/ m ³ biomass				
Break even biogas yield	34	27	25		

Key preconditions:

- -Gasyield from manure
- -Gasyield from waste
- -Gate fee (receipt of waste)
- -Biogas sales price

22 m³ biogas/m³ 75 m³ biogas/m³ 50 DKK/m³ waste 2 DKK/m³ biogas Socio-economic effects of the CAD plant

Consequences for:

Agriculture

Energy-sector

Industry

Environment

Other aspects: Security of energy supply, ..

Alternative

Reference

Monetised Externalities

Biogas plant of treatment capacity:

550 ton/day (20% waste)

Monetised externalities:

Socio-economic value per ton biomass

Agriculture

Storage, handling and distribution of liquid manure: Storage savings for liquid manure Transport savings in agriculture Value of improved manurial value (NPK) Value of reduced obnoxious smells

Industry

Savings related to organic waste treatment

Environment

Value of GHG reduction (CO₂, CH₄, N₂O-reduction)

- Value of reduced N-eutrophication of ground water: Liquid manure Org. waste spread on farm land in reference case
 - Org. waste not spread on farm land in reference ca

Results based on biogas plant:

Biogas plant size: 550ton/day (20% waste)

Monetised

0.13 EUR/ton liquid manure0.07 EUR/ton liquid manure0.73 EUR/ton degassed0.67 EUR/ton liquid manure

16.82 EUR/ton org. waste

3.01 EUR/ton degassed

0.39 EUR/ton degassed0.37 EUR/ton liquid manure1.64 EUR/ton org. waste-3.03 EUR/ton org. waste

Annual costs and benefits

Socio-economic results Annual costs and benefits

Results based on biogas plant:

Biogas plant size: 550ton/day (20% waste)

		Result 0	Result 1	Result 2	Result 3
Costs (levellised annuity)			mio.EUR/year		
Investm	ents, operation and maintenance:	1.481	1.481	1.481	1.481
Benefits	(levellised annuity)		mic	.EUR/year	
Energy p	production:				
0,1	Biogas sales	0.526	0.526	0.526	0.526
	Electricity sales	0.061	0.061	0.061	0.061
Agricultu	re:				
-	Storage, handling and distribution of liquid m	anure	0.032	0.032	0.032
	Value of improved manurial value (NPK)		0.186	0.186	0.186
	Value of reduced obnoxious smells				0.097
Industry:					
	Savings related to organic waste treatment		0.675	0.675	0.675
Environm	nent:				
	Value of GHG reduction (CO2, CH4, N2O-re	eduction)		0.605	0.605
	Value of reduced N-eutrophication of ground	water:		0.079	0.079
Sum:		0.588	1.481	2.165	2.262
		Result 0	Result 1	Result 2	Result 3
			mic	b.EUR/year	
Surplus as annuity: Benefits - costs		-0.893	0.000	0.684	0.781

Estimated Environmental Benefits

under Danish Conditions

Reduced Green House Gas emissions

90 kg CO₂ EQ per tonne biomass treated

Reduced Nitrogen leaches to fresh water systems 0,11 kg N per tonne biomass treated

Conclusions

Economically and socio – economically feasible when:

- -Organic waste is included, and
- -Environmental and economic externalities are taken into account

Very cost-efficient as a tool for Green House Gas reduction

Beneficial for related farmers

Creates jobs and local activity

Why so far (almost) only in Denmark ?

- -District heating systems are widespred
- -Waste recycling via arable land is/was encouraged
- -Legislative push on farmers regulations on manure application
- -Tradition to utilise nutriens from manure in crop production
- -Market access and fixed electricity prices.

-Openminded authorities and organisations.

But

Danish centralised co-digestion plants became victims of their own succes.

Demand for suitable organic waste increased, and the market is vacuum-cleaned, so now good waste is hard to find, or too expensive

Treatment fees were reduced or converted into costs.

Since 1998 the enlargement with plants was halted due to a number of barriers;

Reduced public acceptance – fear of smell

-difficult to find sites for construction of plants

Uncertainty about economic performance

-due to reduced average electricity price

-uncertainty about waste supplies

Lack of incentives for farmers

-some farmers wish to redistribute/dispose surplus manure

But now things start moving again because;

-Electricity price increased to 10 eurocents/kwh

- -General increase in energy prices makes heat from CHP attractive
- -Restrictions on manure handling still increasing
- -Farmers wish to supply concentrated animal waste fractions

Government ambition;

3 new large plants every year untill 2025 Potentially up to 75 % of manure in DK

Plant concepts of the future

Long distance transport

Aknowledgement

Thanks to Danish Biogas Association for letting us use the pictures in this presentation

www.biogasbranchen.dk

Thank you for your attention