Project: BiG>East (EIE/07/214)

Biogas Show Cases in the target region of Bulgaria

Deliverable D 6.4

Submitted by:

ENERGOPROEKT Jsc. 1407 Sofia, Bulgaria 51 James Boucher Blvd.

IP "N. POUSHKAROV", 1080 Sofia, Bulgaria 7 Shousse Bankya Str.

02 April 2009

With the support of:

Intelligent Energy 💽 Europe

The sole responsibility for the content of this publication lies with the authors. It does not represent the opinion of the Community. The European Commission is not responsible for any use that may be made of the information contained therein.

Table of Contents

Executive summary	3
1. Biogas Show Case: Pig-reproduction farm – JSC Kalchevo	4
1.1. Basic plant design	4
1.2. Technology Specifications	5
1.3. Economical specifications	5
Assumptions	5
Summary	6
Discussions	7
1.4. Organizational structure	8
1.5. Risk management	8
2. Biogas Show Case: Mekom JSC, Silistra, Sitovo	9
2.1. Basic plant design	9
2.2. Technology Specifications	10
2.3. Economic specifications	10
2.4. Organizational structure	11
2.5. Risk management	11
-	

Appendix 1. Economic calculation sheets for Pig-reproduction farm – JSC Kalchevo Appendix 2. Economic calculation sheets for Mekom JSC, Silistra, Sitovo pig farm

Executive summary

The aim of the Show Cases is to show the way on how to realize a biogas plant and to prepare the ground for the implementation of pilot projects. This document will be used as a communication tool to motivate and convince decision makers (financers, politicians, utilities, NGOs, project developers, SMEs) to support new biogas production facilities.

Show Cases 1 and 2 demonstrates that there should be preferential prices for electricity from biogas in order to stimulate developments of the sector and corresponding ecological and social benefits. Feed in tariffs for electrical energy produced from biogas should be at least 0,12 €kWh. Alternative mechanisms for biogas projects support like income from carbon emission reduction, better conditions for bank loans could be provided.

Biogas Show Case 1 considers pig-reproduction farm – JSC Kalchevo.

The potential biomass for biogas production is 36500 m^3 /year liquid pig manure and 3000 t/year silage (maize or sunflower). Average produced biogas per year is 1000000 m^3 . Electrical output would be about $250 \div 300 \text{ kW}$. Potential heat produced is about 300 kW of which about 60 % could be utilized considering current heat consumers. Biogas plant could be based on vertical complete mix digester.

Economic calculations are performed for low to medium standard plant (3100 \notin kW). It is showed that at current feed-in tariffs of 0,07 \notin kWh_{el} biogas project could not be profitable. Investment costs are 850000 \notin that is equivalent to 104000 \notin year for 15 years at 8% bank interest rate. Calculated yield from electricity sale is 158500 \notin year at 0,07 \notin kWh_{el}. Yield from heat sale is 26000 \notin year at 0,015 \notin kWh_{th}. General business cost (maintenance, personnel) are 81500 \notin year. Biomass cost is 95000 \notin year (28 \notin t). Therefore Internal Return Rate and Total Earnings are negative. Different strategies to improve the economy of the project are discussed.

Biogas Show Case 2 considers Mekom JSC, Silistra, Sitovo pig farm.

The potential biomass for biogas production is 43000 m³/year liquid pig manure and 5500 t/year slaughter wastes. Average produced biogas per year is 1550000 m³. Electrical output would be about $350\div450$ kW. Potential heat produced is about 450 kW.

Biogas plant could be based on vertical complete mix digester. Appropriate sanitation and conditioning of slaughter wastes is important in order to comply with the regulations.

Economic calculations are performed for high standard plant (4500 \notin kW). Hypothetical feedin tariff of 0,09 \notin kWh_{el} is used. Investment cost is 1800000 \notin that is equivalent to 215000 \notin year for 15 years at 8% bank interest rate. Calculated yield from electricity sale is 296500 \notin year at 0,09 \notin kWh_{el}. Yield from heat sale is 38500 \notin year at 0,015 \notin kWh_{th}. General business costs (maintenance, personnel) are 136800 \notin year. Biomass costs are not considered. Internal Return Rate is 5,2 %. Total Earnings are negative -33550 \notin year. Losses could be reduced if careful planning of the biogas plant is performed.

Organisational structure for both Show Cases is simple –operator and feedstock suppliers are the same company (or are owned by one company as in Show Case 2).

Main risks for the potential biogas plants analysed are technological and regulatory.

1. Biogas Show Case: Pig-reproduction farm – JSC Kalchevo

1.1. Basic plant design

The main biogas sources available at the farm are liquid pig manure and sunflower silage:

- 36500 m^3 liquid pig manure per year with total solids content of $3\div6\%$
- 3000 t/year sunflower (harvested area ~200 ha)

This feedstock determines the process technology, basic plant design and dimensions. Electrical output would be 250 to 300 kW (275 kW for the calculations).

Agricultural biogas plant operates with four process stages (figure 1.1):

- 1. Transport, delivery, storage and pre-treatment of feedstock
- 2. Biogas production (Anaerobic Digestion)
- 3. Storage of digestate, eventual conditioning and utilization in CHP
- 4. Storage of biogas, conditioning and utilisation

Fig.1.1. Block diagram showing the overall production process

The mass balance of biogas plant is as follows (see fig. 1.2):

Average totals solids of input materials	7,1 %
Input into biogas plant	39500 t/year
Average amount of produced biogas per ton of input material	27 m³/t
Average quality of the produced biogas	56,3 %CH4
Average produced biogas per year	1081000 m ³ /year
Average produced biogas per hour	123,4 m³/h
Necessary digestion volume (Digester capacity)	1200 m³
Average remaining biogas sludge without separation	38257 m ³ /year
Average remaining TS in biogas sludge without separation	4%

Fig.1.2. Block diagram showing the mass balance

1.2. Technology Specifications

Liquid pig manure is pumped into the pre-treatment tank and then to the digester. Silage is tipped by a loader and then fed into the digester by solid feedstock feeding system. The insertion of the feedstock into the digester has to be air-tight and should not allow leak of biogas. The armatures and pipelines used in biogas installations must be corrosion proof and suitable to handle specific types of materials (biogas and biomass). Biomass pipelines should have a diameter of 300 mm.

The digester (bioreactor) will be vertical completely mixed steel tank. Feedstock heating will be done both during the feeding process (pre-heating), and inside the digester, by heating elements. Digesters must be insulated. Appropriate stirring should be provided. Low-pressure biogas storage should be provided.

Biogas desulphurization and drying should be provided.

The storage tanks for digestate will serve as post-digesters and should be covered with gas tight membrane. Digestate can be stored in concrete tanks or in lagoon ponds, covered by natural or artificial floating layers or by membrane covers.

Appropriate process parameters control should be provided.

Combined heat and power (CHP) generation will be used for biogas utilization. Heat produced will be used for feedstock and digester heating in the winter and for farm needs.

1.3. Economical specifications

Based on plant design (inputs and outputs) and technological solution in this chapter the economy of project is described. To calculate the project economy the BiG>East biogas calculation tool elaborated by Tobias Finsterwalder is used.

Assumptions

In order to estimate the basic economic project parameters, the following assumptions were made:

Low standard plant – 3100 €/kW (leading to 850000 € total investments) Personnel costs – 3 €h or 500 €month, full time – one operator and one administrator engaged full time Costs for maintenance as % of investment per year: Construction/Buildings – 2% (5800 €year) Machinery – 6% (12600 €year) Electrical equipment – 4% (2800 €year)

Other – 2% (1000 €year) CHP and grid access – 0.01 €kWh (22450 €year for 275 kW_{el}) Gas production 14 m^3 /t for pig manure with TS=5% 190 m³/t for sunflower sillage with TS=32% No rent for the site – own lands No insurance – not a practice Other costs – 0,5 €t (20000 €year) Costs of biomass: Costs for pig manure handling to get it to the plant – $0 \notin t$ Costs for silage – 28 €t *Cost for (revenue from) electricity – 0,07 €/kWh* Heat selling – 60% of theoretical production (70% in winter, 50 % in summer) Electricity selling – 93% of theoretical production Revenue from heat – 0.015 €kWh (currently, 120 t/year heavy fuel oil is used) Interest rate (for the banks) -8%Credit period – 15 years Liquid assets – 20000 €

Summary

Economical specification is summarized in tables below:

Economical	specification
Leononneur	specification

Investment Cost:			Data input from
"Pig-breeding farm" – JSC	Euro	Comments	economic tool
Kalchevo			
Construction / Buldings /	290000	Incl. VAT and delivery	Calculation B12
Earth works			
Machinery	210000	Incl. VAT and delivery	Calculation B13
Electrical equipment	70000	Incl. VAT and delivery	Calculation B14
Planning and site supervision	50000		Calculation B15
CHP and grid access	180000	Incl. VAT and delivery	Calculation B16
Others	50000		Calculation B17
Liquid assets	20000		Summary C7
Total Financial Demand	850000		Summary C6

Profit and Loss:		Data input from	
Pig-growing farm Kalchevo	Euro	Comments	economic tool
Economic Yield from Plant			
Operation			
Yield from electricity sale	158500	Value from Year 1 of operation*	Summary C30
Yield from heat sale	26000	Value from Year 1 of operation*	Summary C31
Plant working costs			
General Busines Cost	81500	Value from Year 1 of operation*	Summary C34
Biomass purchase	95000	Value from Year 1 of operation*	Summary C19
Purchase of electric energy	11000	Value from Year 1 of operation*	Summary C35
Discharge of sludge	0	Value from Year 1 of operation*	Summary C36
Earnings before Interest	8000		Summary C38
Internal Return Rate (IRR)	< 0		Summary C40
Capital Cost	104000		Summary C42
Total Earnings	-96000		Summary C44

* The annual costs are difficult to determine because they vary significantly over the years (which has strong effects on the economic feasibility e.g. the biomass prices). The complete economic calculation sheets are attached as Appendix 1.

Discussions

It can be clearly seen that at the current situation biogas project is not economically feasible. In order to determine the necessary regulatory and technical changes so that the project becomes economically viable, some assumptions will be changed.

Some of the parameters that can be used to improve the economy of the project are:

- increase in preferential prices of electricity
- better conditions for bank loans
- lower cost for biomass
- different quantity of energy crops

Type and quantity of biomass		36500 t manure	36500 t ma- nure, 3000 t silage	36500 t manu- re, 8000 t silage	
Power	kW	140 kW	275 kW	500 kW	
Technology	€kW	4000	4000	2800	
Investment	€	560000	1100000	140000	
Plant oper	ational a	and capital o	costs		
Personel	€/year	12000	12000	12000	
Maintenance total	€/year	26276	52000	78000	
Maintenance CHP	€/year	11200	23000	42000	
Biomass +energy	€/year	5496	95100	244200	
Other	€/year	18250	24250	34250	
Capital costs (bank interest rate 6%)	€/year	62400	118000	149000	
Capital costs (bank interest rate 8%)	€/year	70434	133500	168500	
Capital costs (bank interest rate 12%)	€/year	87800	167000	211000	
Economic Y	ield fron	n Plant Ope	ration		
Revenue – heat (at 0,015 €/kWth)	€/year	13000	30500	48000	
Revenue - electricity (at 0,07 €/kWel)	€/year	78500	158500	288000	
Revenue - electricity (at 0,09 €/kWel)	€/year	101000	204000	370500	
Revenue - electricity (at 0,12 €/kWel)	€/year	135000	271500	494000	
Earn	ings befo	ore Interest			
Operational balance (at 0,07 €/kWel)	€/year	29478	5650	-32450	
Operational balance (at 0,09 €/kWel)	€/year	51978	51150	50050	
Operational balance (at 0,012 €/kWel)	€/year	85978	118650	173550	
Total Earnings (bank interest rate 8%)					
Total balance (at 0,07 €/kWel)	€/year	-40956	-127850	-200950	
Total balance (at 0,09 €/kWel)	€/year	-18456	-82350	-118450	
Total balance (at 0,12 €/kWel)	€/year	15544	-14850	5050	
Critical price	€/kWel	0.105	0.129	0.121	

The following conclusions could be made based on the table above (bank interest rate - 8%, silage - $28 \notin t$):

- if feed in tariffs are 0,09 €kWh or below than revenue from energy sale is less than costs for silage

- if feed in tariffs are 0,12 €kWh than investments could be covered for plants on agricultural wastes and low standard robust plants using energy crops.

1.4. Organizational structure

The owner and the operator of the plant will be the privately owned Pig-reproduction farm – JSC Kalchevo. Most of the feedstock will be provided by the manure management system of the farm and energy crops grown on own or rented lands. If appropriate preferential prices for selling electricity are passed as state regulations than additional corn silage could be bought. Long term contracts for silage could be established.

Contracts for utilization of the liquid fertilizers produced are needed also.

1.5. Risk management

The primary risk factor for the biogas project is technological due to the lack of local experience in planning, construction, supervision, operation and maintenance of biogas plants. Successful cooperation between experienced foreign consulting and local engineering company could provide the necessary biogas know-how and local technical support, training and oversight.

Other major concern are prices of silage that is used as energy crops – they can vary from less than 25 €t to more than 55 €t. This is mitigated from the fact that basic feedstock is pig manure and silage own production. In addition, contracts for residues from sunflower mill "Papas-oil" and from wheat processing plant in Kalchevo could be established.

Possible risk for any waste management project is increased attention to the ecological problems of the site, which can lead to unexpected additional requirements and expenses.

2. Biogas Show Case: Mekom JSC, Silistra, Sitovo

2.1. Basic plant design

The main biogas sources available at the farm are pig manure and slaughter wastes:

- 43000 m^3 liquid pig manure per year with total solids content of $3\div6\%$
 - 5500 t/year slaughter wastes

This feedstock determines the process technology, basic plant design and dimensions. Electrical output would be 350 to 450 kW (400 kW for the calculations).

Agricultural biogas plant operate with four process stages (figure 2.1):

- 1. Transport, delivery, storage and pre-treatment of feedstock
- 2. Biogas production (Anaerobic Digestion)
- 3. Storage of digestate, eventual conditioning and utilization in CHP
- 4. Storage of biogas, conditioning and utilization

Fig.2.1. Block diagram showing the overall production process

The mass balance of biogas plant is as follows:

Average totals solids of input materials Input into biogas plant	10.5 % 48500 t/year
Average amount of produced biogas per ton of input material	32 m³/t
Average quality of the produced biogas	57 %CH4
Average produced biogas per year	1550000 m ³ /year
Average produced biogas per hour	177 m³/h
Average remaining biogas sludge without separation	46800 m ³ /year
Average remaining TS in biogas sludge without separation	7,1 %
Average remaining Biogas Sludge liquid phase TS =5%	42823 m ³ /year
Average remaining compost TS=25%	3897 m ³ /year

Fig.2.2. Block diagram showing the mass balance

2.2. Technology Specifications

Biogas plant will use complete mix digester with appropriate equipment for mixing, heating, filling and protection.

Appropriate sanitation and conditioning of slaughter wastes should be provided.

Advanced process parameters control and indication should be provided. Condition. Effective control of pathogens shall be assured (livestock health control, feedstock control, etc.).

Additional details concerning technology are provided in Show Case 1 description (sec. 1.2).

2.3. Economic specifications

Economical specification is summarized in tables below, assuming: *High standard plant* – 4500 €/kW (leading to 1800000 € total investments) *Revenue from electricity* – 0,09 €/kWh (hypothetical) *Other assumptions* – see Show Case 1

Investment Cost: Mekom, Silistra, Sitovo	Euro	Comments	Data input from economic tool
Construction / Buldings /	-600000	Incl. VAT and delivery	Calculation B12
Earth works			
Machinery	-450000	Incl. VAT and delivery	Calculation B13
Electrical equipment	-150000	Incl. VAT and delivery	Calculation B14
Planning and site supervision	-140000		Calculation B15
CHP and grid access	-350000	Incl. VAT and delivery	Calculation B16
Others	-110000		Calculation B17
Liquid assets	-20000		Summary C7
Total Financial Demand	-1800000		Summary C6

Economical specification

Profit and Loss: Mekom, Silistra, Sitovo	Euro	Comments	Data input from economic tool
Economic Yield from Plant			
Operation			
Yield from electricity sale	296500	Value from Year 1 of operation*	Summary C30
Yield from heat sale	38500	Value from Year 1 of operation*	Summary C31
Plant working costs			
General Busines Cost	136800	Value from Year 1 of operation*	Summary C34
Biomass purchase	16000	Value from Year 1 of operation*	Summary C19
Purchase of electric energy	16000	Value from Year 1 of operation*	Summary C35
Discharge of sludge	0	Value from Year 1 of operation*	Summary C36
Earnings before Interest	182000		Summary C38
Internal Return Rate (IRR)	5,2%		Summary C40
Capital Cost	215000		Summary C42
Total Earnings	-33550		Summary C44

* The annual costs are difficult to determine because they vary significantly over the years (which has strong effects on the economic feasibility e.g. the biomass prices). The complete economic calculation sheets are attached as Appendix 2.

2.4. Organizational structure

The owner of the plant will be the meat – processing company "Mekom" JSC. The operator of the plant could be the pig farm in Sitovo or a separate enterprise established for the purpose of waste management – also owned by "Mekom" JSC. The feedstock will be provided by the manure management system of the farm and wastes from slaughter houses. Most of the organizational structures will be internal for the company.

Contracts for utilization of the liquid fertilizers produced are needed.

2.5. Risk management

The primary risk factor for the biogas project is technological due to the lack of local experience in planning, construction, supervision, operation and maintenance of biogas plants. Successful cooperation between experienced foreign consulting and local engineering company could provide the necessary biogas know-how and local technical support, training and oversight.

Possible risk for any waste management project is increased attention to the ecological problems of the site, which can lead to unexpected additional requirements, penalties and expenses.